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ABSTRACT 

Gaseous Particulate Interaction in a 3-Phase Granular Simulation 

Kevin W. Munns 
Department of Computer Science, BYU 

Master of Science 

As computer generated special effects play an increasingly integral role in the 
development of films and other media, simulating granular material continues to be a 
challenging and resource intensive process. Solutions tend to be pieced together in order to 
address the complex and different behaviors of granular flow. As such, these solutions tend 
to be brittle, overly specific, and unnatural. With the introduction of a holistic 3-phase 
granular simulation, we can now create a reliable and adaptable granular simulation.  

Our solution improves upon this hybrid solution by addressing the issue of particle 
flow and correcting interpenetration amongst particles while maintaining the efficiency of 
the overall simulation. We achieve this by projecting particles onto a 2D manifold and 
implementing density correction using a quadratic solver. Particle updates are projected 
back into 3D to spread the particles apart on each frame. 

Keywords: granular simulation, unilateral incompressibility, compression 
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Chapter 1 

Introduction 

Image 1: Close-up of sand from the Coral Pink Sand Dunes State Park in 
Utah. These grains are rough and misshapen allowing for sand to interlock 
creating friction, which allows it to form a pile. 

As computer-generated special effects become more prevalent in media, more challenging 

natural phenomena have been simulated and presented in a believable manner. Simulating 

fine particulate systems such as sand, soot, detergent and flour have historically been 

difficult as they exhibit a wide variety of behavior that mimic other phenomena. A pile of

volcanic rock may act completely solid at times, then at other times exhibit fluid-like 

flowing with rockslides. Flour can pile as it is poured from a sack. Soot can cloud up if 

disturbed. Detergent can flow in interesting and unpredictable patterns as it clumps and 

breaks up. 
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Sand has received special attention as early as the 1980’s. Its applications range 

from modeling natural phenomena such as weathering and erosion to entertainment. Sand 

can form piles. Granules can interlock to form micro arches. As sand avalanches certain 

granules can actually rise. As sand gets deeper, it doesn’t increase in pressure, as opposed 

to water, which is why it can be used in an hourglass: its rate of flow is constant.  

Understanding sand can be crucial in assessing the risk of debris flow, which puts 

certain populations around the world in danger. Sand’s ability to allow fluid to percolate 

through it destabilizes its structure. It can lead to mud slides that flow like a liquid but

behave like cement. 

Image 2: Sinkhole in Guatemala. 

Observing sand can lead to efficiencies in mineral displacement and energy

exploration. Fracturing, or mining natural gas with the use of high-pressured water, is of 

great interest to our energy sector. Environmental hazards like sink holes reveal sand’s 

interstitial structure and by understanding sand’s behavior, we can understand the 
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consequences of various displacement techniques in use today. Understanding basic 

behaviors can give us insight in preservation of natural phenomena as well as 

understanding our geological history. 

The simulation of granular materials can also be used in entertainment. This can 

add a layer of depth and realism to movies, enabling the audience to more fully experience 

emotions. In Pixar’s Toy Story 3, our heroes find themselves helpless as they are drifting 

among debris in a garbage incinerator. The audience can relate to the emotion drawing 

upon their earlier experience as children in a ball pit. During the making of the film, a ball 

pit was set up in Pixar’s main office for the artists and technicians to revisit and explore the 

emotion. 

Image 3: Still of Woody in the garbage incinerator in Toy Story 3. 

The complexity of sand can lead to the effect being avoided in animation all together 

make the case for our research into efficient sand simulation. The simulation of sand can 

also tie together computer-generated effects with their natural counterparts, though sand 

simulations are often left out because they slow production and raise costs. In Michael 

Bay’s Transformers, for example, the U.S. military engaged in battle with a scorpion-like 
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robot known as Scorpnorok. After losing the engagement, Scorpnorok burrows into the 

ground for safety. The act of digging without a simulation resulted in the scorpion looking 

fake and floating as it dug down. It also meant that the camera angle needed to be 

horizontal with the ground to try to hide the character and ground interaction as much as 

possible to avoid the CGI popping effect as the visual accuracy of avalanching sand is hard 

to sell to an audience due to its complex behavior. A performant and visual plausible sand 

simulation is necessary to provide the industry with a wider toolbox to include sand in 

their media.

Image 4: Still of Scorpnorok burrowing into sand in Transformers. 

The need for a holistic sand simulations is far reaching. Sand would take on a 

different purpose in the Avengers. Throughout the film, characters are constantly hitting 

and breaking buildings and streets. Concrete and asphalt fracturing exhibit behaviors of

piling and avalanching. As rocky debris scatters these interactions are largely ignored. A 

cement barrier that fractures, piles and slides as it hits the street would not only make the 

effect more believable, but speed up production as artists no longer would have to 

manually simulate piling separately and thus drive special effects costs down. 
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Simulating millions of particles of sand is challenging. Each grain of sand has a 

unique material property and shape. Just a handful of sand contains hundreds of thousands 

of these particles, all of which collide against each other and interlock in different ways 

creating friction and stress while at times allowing movement and collision. These unique 

properties give sand the ability to act as a solid at times and flow like a fluid at others. 

Holladay and Egbert have addressed the need to have an efficient and visually 

compelling granular simulation using a hybrid technique [3] (see image 5). Sand is 

comprised of three separate simulations including static geometry, a fluid solver featuring

two-way coupling of friction and pressure, and free flowing particles. The efficiency gains 

of having sand that is further from the surface simplified is appealing as it allows artists to 

create and iterate granular simulations with greater speed and lower computational costs 

resulting in special effects studios saving money. 

Image 5: Cutaway of Holladay and Egbert’s hybrid simulation revealing the 
solid, liquid, and gas states. 
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Our solution builds upon a hybrid simulation of sand which seeks efficiency and 

visual plausibility over accuracy. Visual plausibility is necessary for effects to be believable 

to a film audience. Accuracy can be slow and costly and is often not necessary in a 

cinematic context. The hybrid technique relies on more complex states near the surface to 

maintain integrity of the system while keeping simulation frames down.  

The most complex state of the hybrid solver is the gaseous state which consists of a 

thin layer of particles that glide on top of the fluid simulation below. This state uses 

simplified particle physics as physically-based simulation would introduce a computational 

bottle neck on the system. The lack of collision or particle-particle interaction on the 

surface can lead to undesirable artifacts that detract from the overall simulation. These 

special cases are similar to edge cases that appear in general simulation requiring the 

programmer to manually patch or deflect them. We propose a general modification to the 

gaseous state by introducing a simplified algorithm that addresses the issue when particles 

can clump up together and interpenetrate leading to visual flaws in the simulation.

We solve this by adding a density constraint into the system. This constraint is 

enforced with a density correction step that uses a quadratic minimization solver to 

produce a pressure gradient. Particles are displaced from high pressure into low pressure 

zones.  A key contribution of our research involves flattening the particles from 3 

dimensions into 2 dimensions to linearly reduce the problem space of our solver. This is 

possible by acknowledging the tendency of surface particles to flatten out. Particles that 

sink too far are converted into the separate liquid phase. The vertical variability of the 

particles are not a primary component in the distribution. Applying the density correction 
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step with reduced dimensions means clumping and interpenetrating particles are 

prevented in typically what is the most expensive simulation step without creating the 

computational bottleneck in other approaches. 

The remainder of this thesis is organized as follows: Chapter 2 addresses previous

work and methods for simulating sand efficiently. Chapter 3 reviews the hybrid solution 

introduced by Holladay and Egbert that we use as the basis for the work presented here. 

Chapter 4 describes our algorithm and how it fits in the context of the hybrid solution. 

Chapter 5 demonstrates results of the algorithm. Chapter 6 discusses future work. Chapter 

7 provides some concluding remarks relative to this thesis. 
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Chapter 2 

Related Work 

Sand has been observed and modeled to highlight and simulate varying behaviors. Liu, 

Kaplan, and Gray first considered the fractal and recursive behavior of sand, observing how 

it can settle, form patterns, bridges and fractal structures that repeat on multiple scales 

[17]. Cundall and Strack first developed a discrete numeric model for particles to collide 

and were the first to discover the properties of granular assemblies [1]. McCarthy and 

Ottino recognized the system-wide behaviors of sand and modeled equations to capture 

avalanching, friction, and sliding of sand inside a tumbler [4]. Mehta et al. have revisited the 

piling and arching of sand producing a model of sand that takes into consideration the 

angle of repose and handles collisions through discrete element methods [20]. 

2.1 Discrete Element Methods 

The most accurate and realistic looking approach to simulating granular phenomena is to 

use Discrete Element Methods (DEM). DEM takes an intuitive and straight-forward 

approach. Each particle is simulated as a rigid body. A simple piece of geometry stands in

for the particle and simulates its 3-dimensional position, velocity, and momentum. Spheres 

are chosen as a proxy because the collision detection is efficient. A particle can be 

represented by a small group of spheres, known as an assembly (see image 6), of random 

sizes frozen together to mimic interlocking and friction on a particulate basis.  
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Image 6: Granular Assembly comprised of frozen spheres. 

The DEM algorithm integrates all Newtonian forces and particles and updates their 

velocities and positions. This approach is computationally expensive and necessitates 

limitations on either the number of particles in the simulation or the number of frames 

simulated, though with some simulations multiple particles track a single near-by particle 

to reduce complexity. While DEM solutions work for scenes of small scale, they become 

prohibitively expensive as more particles are added. 

The discrete element method has been improved upon by Fortin, Millet, and Saxce 

through projecting friction onto a cone when dealing with compaction [7]. Irving et al. 

revealed a superior method for resolving multiple contact points between non-convex 

bodies [11]. When spherical particulate assemblies are used in proxy of granules, they 

speed up computation. Particles can even be used as underlying rigid body collision proxies 

for any arbitrary geometry [15]. Coarse grain collision detection can be tuned when dealing 

with granular flow to find potential collision pairs faster [22]. Liu et al. have found that by 

using primary component analysis on the coarse axis sweep step, the complexity of finding 

potential collision pairs can be reduced [18]. When colliding thousands of particles, fine-

grained steps can be culled from particles not currently acting upon geometry [19]. Our 
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simulation seeks to avoid paying the high computational cost of simulating individual 

granules and their collisions at an individual level. With our work addressing surface 

particles, DEM methods would be a computational bottleneck for the simulation, and 

therefore unsuitable. 

2.2 Height Maps 

In order to reduce the number of particles in a scene, height maps [31] are often used. 

Discrete 2-dimensional height maps are rectangular columns that stand as proxies for 

particles [32]. A pile of granules is mostly solid and therefore can be frozen, or temporarily 

removed from computation.  Only the surface needs to be simulated to mimic granular

phenomena. In a height map, a 3-dimensional surface is constructed using a 2-dimensional 

grid of height values that determine the surface of the solid mesh (see Image 7). The

surface holds the remaining top layer of particles that are simulated with DEM. Height 

maps have been constructed together with DEM models so that they can adaptively grow 

and replace particles or shrink and produce additional particles. 
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Image 7: A Height Map sliced by a laser engraver. 

Although height maps provide some computational relief, they still suffer from 

having to provide a thick layer of particles sufficient to cover their surface if particulate 

surface detail or granular flow is required, which is computationally expensive. Particulate 

flow can mean a majority of the sand has to be solved using DEM while only a small portion 

can be culled out. Height maps also suffer from requiring sand to be on flat, horizontal 

surfaces [32].  This allows for effects such as foot prints and tracks on a beach [25], but 

does not scale well for simulating effects such as sand being poured from a bucket. Height

maps benefit simulations with deep layers of granules. Our particle layer is a thin covering 

and thus would not be effective at reducing computation as the surface particles would still 

have to be simulated. 
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2.3 Proxy Methods 

Other mesh-like algorithms can settle particles in place or replace still particles with proxy 

geometry to simplify the number of actors in a scene [33]. While these approaches solve 

some of the issues that come with height maps, they still suffer from having to simulate a 

large number of particles using DEM. These techniques have allowed detail to be allocated 

to where it is most important. Adams et al. have shown that particles can be adaptively 

down-sampled while preserving detail in the fluid simulation [16]. Zhang et al. authored a 

similar approach that also combines deep-water particles and is GPU friendly. Hsu and 

Keyser developed a technique in which as they piled rigid bodies, they would freeze pieces 

that have stopped moving and were below the surface to speed up computation [9]. Irving 

et al. revealed that by using a grid that was made of tall and thin cells, deep below the 

surface, they could use less cells but keep the horizontal grid resolution, which was 

responsible for surface wave effects [10].  Recently, Kim et al. have opted to upscale a fluid 

simulation by adding detail entirely to the surface wave simulation while on a coarse grid 

below [24].  Proxy methods could simplify the simulation of particles by freezing them onto 

control particles. Our method, however, seeks to avoid the interpenetration of particles 

which previous proxy method fails to address.  

2.4 Sand as a Fluid 

As sand avalanches and flows, it can be modeled similar to a liquid. Fluid solvers are able to 

efficiently simulate fluid behavior through essentially sub-sampling the phenomena. Fluids 

can be simulated with either grid-based Eulerian approaches or particle-based Lagrangian 

methods. A hybrid or Fluid Implicit Particle (flip) solver uses particles to track the fluid 
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while using a volumetric approach to calculate pressure [13]. As fluids are solved using

pressures and their number of particles are drastically smaller than granules, they provide 

a great speed-up over DEM methods. Drawing inspiration from McCarthy and Ottino, Zhu 

and Bridson explore the continuum properties of sand by using fluid equations [2] that 

Bridson had worked on [14]. They modified an Eulerian grid to only animate cells where 

the sand is above the angle of repose and able to overcome frictional forces, otherwise 

making them solid.  

Chang et al. improve on this approach using smooth particle hydrodynamics (SPH) 

allowing for better splash effects [5]. SPH is a Lagrangian approach to fluid solvers where 

fluid information is tracked on a particle bases. The movement of particles corresponds to 

the movement of the liquid. SPH was first introduced by Monaghan [13] and extended to 

account for multi-phase behavior [21]. Alduá and Otaduy also take an SPH approach 

eliminating grid-like artifacts from Zhu and Bridson’s earlier work [8]. The SPH approach 

has also allowed for fluids and granules to be co-simulated [12]. A drawback of using SPH 

to simulate liquid in general is the instability of the system when particles get too close.

Particles that end up too close together explode in all directions as stiff spring forces react 

adversely to small floating point values. 

Fluid-based methods for simulating granular phenomena in general suffer from 

various issues. While granules can take on fluid-like characteristics when avalanching, they 

aren’t fundamentally fluids. Granular phenomena simulated as a fluid looks and acts like 

quicksand or mud. Fluid based methods suffer from particles that separate from each 

other, which makes them look and behave like globs of mud. Fluids also pile fundamentally 
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different as they rely on surface tension instead of friction to hold their material together. 

Simulating surface particles as a fluid would result in less surface detail. Fluid simulation 

steps smooth over fine movement which would make the surface look artificial. Surface 

particles need to be able to break free from the surface when granules avalanche and 

splash. Simulating surface particles as a fluid also adds additional computational 

complexity. The hybrid solver uses surface particles to add detail. The current work has 

issues with clumping on the surface (Image 8). Our solution makes the granules appear less 

clumped. This will be covered in more detail in Chapter 4.

Image 8: Surface granules clumping together along an edge 

DEM, height maps, and fluids all have major drawbacks that reduce the believability 

of the granular phenomena by either making them look less accurate or by reducing the 

number of particles as a trade-off to render time. Combining these different approaches can 

allow for some better trade-offs in appearance and complexity. Sand is described as three 

phases of matter and interstitial fluid is addressed by Forterre and Pouliquen [6]. Holladay 

and Egbert developed a hybrid system that allowed underlying particles to solidify and 
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liquefy depending on their motion and how close they are to the surface allowing for a fast 

and realistic simulation [3]. 

Discrete element methods are the most accurate approaches for simulating granular 

materials, but their complexity is undesirable for the rapid iteration needed for adding 

special effects in movies. Fluid approaches reduce complexity, but at the cost of realistic 

behavior. A hybrid approach using both fluid and DEM methods solves the trade-off 

between fluid and discrete element methods, but using discrete element methods still 

introduces too much complexity. Our approach seeks to replace the standard DEM method 

for particles. 

All existing methods for simulating sand fall short. Discrete Element Methods are 

too computationally expensive. Fluids methods suffer smoothing effects. Proxy methods 

cannot be applied to the surface while maintaining detail.  Our solution is to address these 

short-comings by applying a light-weight density correction step that pushes particles 

apart. 
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Chapter 3 

Hybrid Granular Simulation 

We review the Hybrid simulation by Holladay and Egbert as our research builds upon the 

hybrid solution. We propose an algorithm that preserves particulate detail on the surface of 

the simulation. We will give sand its characteristic look and feel by introducing particles 

that bounce, splash without clumping up or looking like a viscous fluid. In order to describe 

our solution, we must first describe the approach we have taken to simulate sand.  

In the hybrid solution, granular phenomena can be characterized by 3 distinct 

phases: solid, liquid, and gas. Granules are solid-like in their lowest energy state. 

Microscopic particles are rough and interlock forming tight and incompressible structures. 

Sand can pile up and maintain a slope, something that is impossible in a liquid. As sand is 

poured, it will continue to form a bigger pile until the angle of the pile becomes steeper 

than the material’s angle of repose. This angle describes the angle in which the forces of 

gravity overcome the forces of friction in the material leading to granules breaking off and 

sliding down the pile. 

While in motion or avalanching, particles tend to stay in motion and mimic 

behaviors found in fluids, behaviors such as incompressibility, cohesion, and dispersion. 

Particles will flow until the friction of the material overcomes the momentum and 

gravitational forces acting on the particle. During particulate flow, particles may collide 

with one another and bounce into the air separating entirely from the system. 
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Airborne particles resemble gaseous particulate interactions. These particles are 

generally free from interaction with other particles until they either leave the system or fall 

back onto the material.  In the latter case, they may either rebound or join the majority of 

the material. Airborne particles follow gaseous properties and can be modeled with simple 

Newtonian forces. 

Holladay and Egbert’s hybrid solution describes and implements their simulation in

three states, which characterize the three main approaches to granular simulation. 

Particles that are below the surface of the simulation and are not currently in motion are 

culled out and are replaced by a proxy geometry in the form of a triangulated mesh whose 

collision can be proxied by freezing the particles that border its space. This geometry can 

grow as the pile gets deeper or more particles settle. Conversely, when the pile suddenly 

shifts or vibrates, an exterior object penetrates or other forces act on the pile, the solid 

geometry returns to its particulate state. As our research builds upon the gaseous state of 

the hybrid solution, we include relevant details of the hybrid solution in sections 3.1, 3.2, 

and 3.3 for completeness. 

3.1 Solid 

The solid geometry can be carved off and repopulated with granules in preparation for 

simulating moving particles [3]. The amount of geometry converted to the fluid state 

depends on the magnitude of the force acting upon it. Our simulation handles this situation

by allowing a portion of the material to be in a liquid state.  As the simulation proceeds, the 

system converts portions of the material between the solid and liquid states, as 

circumstances require. 



www.manaraa.com

18 

3.2 Liquid 

The liquid state of matter is simulated with a fluid solver. A fluid implicit grid-based 

approach simulates sand as liquid just below the surface of our simulation. The fluid 

simulation acts as a buffer between our frozen solid pile of sand and our surface particles. 

The fluid part of our simulation is the part that gives us most of the continuum behavior 

that is sought after in sand. As such, our solid mesh is now modeled as cells in our fluid 

simulation that freeze when the frictional forces are greater than other forces acting upon 

it. In the presence of greater external forces, these cells convert from a solid state to a fluid 

state and resume participating in the fluid simulation. 

3.3 Gas 

Our gaseous state refers to the surface of the granular material. The surface contains 

individual particles composed of granular assemblies. Aside from texture or describing the 

surface of the fluid, particles can detach from the simulation to emulate effects such as 

splashing, spilling, scattering, and settling. This overcomes the limitations of our fluid 

simulation and gives our sand simulation more believable behavior. 

Particles that ride along the surface of the fluid do not collide against one another as 

collision is computationally expensive and resembles a DEM solution, which is accurate but 

costly. In the 3-phase solver, particles that glide along the surface do so because of state 

information sharing. As a particle gets close to the implicit surface of the fluid, it begins to 

“borrow” characteristics from the fluid closest to the surface. 

Particles are increasingly influenced by the velocities of their fluid counterparts the 

closer they are together. Particles that begin to sink into the fluid either condensate and 
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join the fluid state or are pushed back along the tangent of the implicit fluid surface. 

Particles that remain buoyant may clump together and form rivers in an avalanching 

surface. The extreme overlap of particles may distract the viewer, as particles should not 

interpenetrate. This is the current state of sand of a hybrid sand simulation. We will 

propose a few different approaches, and then go on to describe one that works best. 

The most straightforward approach to increasing realism is to use discrete element 

methods for every particle in the simulation. Even with spatial optimization and a reduced 

number of particles in the simulation. D.E.M can still be too heavy of a solution as we are 

not interested in individual particles colliding. Our solution seeks to highlight the behaviors 

of sand as a continuum, which exhibit macro behaviors that are easily recognizable. We do 

not need to collide particulate assemblies to achieve that level of detail. 

A less complex approach could involve a simplified collision detection model with 

the particles represented as spheres. Collision would be detected using a mark-and-sweep 

coarse collision detection step, which would identify possible colliding pairs. Those pairs 

would be pushed apart to avoid collision. Although this approach would reduce the 

complexity greatly, thousands of particles on the screen would still need to be simulated 

apart from our fluid simulation. The added complexity of performing a coarse collision 

detection step on so many particles can be avoided altogether as our desired behaviors 

mostly come from our fluid simulation. The particles serve to decorate the surface as well 

as hide the underlying fluid simulation. The solution we propose, and the thrust of the 

research in this thesis, is to use a reduced fluid solver to overcome the particle 

interpenetration issue. 
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Thesis Statement 

On the existing hybrid sand solver there exists an issue where particles on the 

surface of the simulation can clump up because there is no collision detection keep them 

apart as it is too expensive. We propose to solve this problem by reusing a quadratic solver 

that is used for density correction on a 3D volume and repurposing it in a 2D context. We 

do this by recognizing that since particles on a surface are mostly flat, they could be 

approached as a 2D problem. We build a special surface that we project these particles onto 

to flatten them out. 

We then perform density correction on this surface, which produces a pressure 

gradient that we then take the reverse gradient. All particles lingering around the surface in 

3-space are advected by the gradient field that run along the manifold whose shape runs

through 3-space. We build a matrix and constraint vector (that is normally run on a 

uniform grid) in a non-uniform context, namely surface mesh. We also perform a gradient 

operation on a non-uniform context, again the surface mesh, when gradients are typically 

run on uniform grids. 

Our major contributions are applying the density correction or quadratic minimizer 

to a 2D surface that we construct and project particles to, the building of and 

parameterization of such surface, finding the gradient of resulting pressures, and the trade-

off or novel approach in correct the problem of particle clumping without resorting to a 

heavy handed approach like collision detection.  
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Particulate Unilateral Incompressibility 

Our approach in preventing gas-state particles from clumping in an unrealistic manner is to 

apply the density-correction step of sand fluids to the gas-state particles. A major 

contribution of our work is the restatement of our problem in a lower dimension. Since gas 

particles only exist at the surface, we take advantage of the 2D manifold property of 

surfaces, projecting the particles to a 2D volume. This is much more efficient than solving a 

minimization problem in 3 dimensions, enabling us to address a higher number of 

particles.  

In fluid solvers there are a wide range of trade-offs involving speed and accuracy. 

For the density correction step, speed is a priority and as such, we can run a solver 

that estimates the density solution with a few iterations (just enough to push the 

particles apart) and then stops, providing a rough solution where pressure doesn’t 

necessarily behave in a manner that is physically correct, but where the 

most apparent interpenetrations are corrected. 

As the fluid is a grid our solution can take advantage of existing structures. Running 

the existing fluid solver would result in surface particles dispersing too rapidly and 

behaving as a wispy fluid. We don’t want the surface to slosh around as it will distract the 

viewer. Instead, we use a light-weight solution that ignores many behaviors typically 

associated with fluids. 

The fluid will contain a surface of varying height. The difference in height between a 

fluid cell and its neighbors cannot exceed a certain threshold that is correlated to the angle 

21 
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of repose. With this guarantee, we construct a manifold. Though the normals of the 2-

dimensional grid cells will differ, their underlying pressure solving step will ignore this 

entirely while the advection step will use the normal as it advects each particle, pushing 

each particle relative to the fluid surface. See Figure 1 for an outline of our approach.

    Figure 1: Algorithm Overview 

Step 1. Surface construction

Insert primitives between grid points of fluid field.

Add vertices to steep edges. 

Flip triangles to normalize surface. 

See section 4.3 for details. 

Step 2. Project particles 

Find closest primitive. 

See section 4.4 for details 

Step 3. Texturization 

Determine adjacent primitives. 

Calculate particle density of each primitive. 

See section 4.5 for details 
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Step 4. Density Correction 

Build Laplacian matrix. 

Run density correction solver. 

See section 4.6 for details 

Step 5.  Gradient

Run pressure difference on each primitive pair. 

See section 4.7 for details 

Step 6.   Advection 

Interpolate gradient vectors onto particle. 

Update particle position. 

See section 4.8 for details 

Once 2-dimensional projection vectors are resolved, the original particle will project

its velocity vector onto the grid.  After the advection step, the particles behave similar to 

those might have been colliding. The particles do not interpenetrate as frequently as before 

our method was applied nor act as a singularity giving our sand simulation surface 

divergence.  

Our approach gives the surface of our simulation increased fidelity without the 

burden of too much computational complexity added by other methods. By introducing a 

simplified fluid simulator that uses a pressure solver to affect the density correction step, 

we are able to prevent granular particles from clumping together without introducing the 

complexity of collision detection and correction. Our method will allow our tri-state 

granular simulation to look as good as discrete element methods while allowing for faster 
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simulation times. Our tool will empower artists to iterate on granular simulations quickly 

giving them greater control over their simulation while reducing time and cost. 

4.1 Compression 

The issue of clumping is directly caused by an artifact in the method chosen in simulating 

the liquid layer. We have chosen the fluid-implicit particle method (FLIP) which is a semi-

Lagrangian approach. This class of fluid solvers suffers from a type of numerical error 

called compression [29]. 

Figure 2 Compression can be seen as clumps of particles form solid lines
along the inside of the rim and at points of impact. 

Compression is a state when fluid clumps together and resists the pressure solver’s

correction resulting in a high density area. In fluids, this can result in a loss of volume and 

produce artifacts in fluid flow. This type of numerical error is acceptable because it is 

difficult to notice due to the constant motion and chaos in fluid simulations. When two 

particles are close together, they receive the same advection updates and travel together 

from the Eulerian solve (see Figure 2). While this works with particles deeply embedded in 

a fluid simulation, it can have a popping effect on surface particles. Moving particles apart 
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also does not prevent them from compressing. Density correction prevents clumping and 

corrects for areas on the surface where particles gather.  

4.2 Volumes and Fields 

To understand our manifold construction, we introduce our data structure used in our fluid 

simulation. A voxel field is a three-dimensional structure where values are stored at 

discreet points along a grid that runs over three axes. Voxel fields are commonly referred to 

as fields, grids, and volumes. A fog volume is the simplest version where a value of 1 

signifies the voxel contains fluid and a value of 0 signifies the absence of fluid (generally 

considered air but in order to realistically capture interaction air requires a 2-phase fluid 

simulation). In general, the more (which results in smaller) voxels representing a volume, 

the more accurate that representation will be at the penalty of memory and computation 

time. Volumes are generally uniformly spaced with uniform dimensions for simplicity, 

though they may vary. Non-uniform fields (such as tall cells) [10] must take into account 

the different voxel areas in computations and spatial derivatives.

Our solution focuses on building a non-uniform surface that lacks the breadth and 

ease of applying algorithms like finite differencing and minimization to accommodate our 

2-dimension surface. We introduce major contributions in building these algorithms for a

non-uniform surface of primitives. 
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Figure 3: Particles gliding across an implicit volume boundary. 

In fog volumes, a surface is built along the border of voxels where 0 meets 1. A 

limitation of the fog volume is that surfaces must be constrained to a voxel boundary. A 

signed distance field (SDF) corrects for this by allowing for a floating point value to be 

stored at the voxel centers which indicate the distance to the closest surface. A negative 

value may represent the distance inside the surface while positive values indicate the 

distance above the surface. The surface is implicit as it exists on the 0 boundary, though the 

boundary value can be set arbitrarily as well. The floating point values allow the surface to 

be constructed within voxel boundaries allowing for a more accurate fluid boundary (see 

Figure 3). Signed distance fields are the preferred representation for Euclidian fluid 

volumes.  

Multiple fields can be used to represent different values such as density and 

velocity. Staggered grids ease the computation of spatial derivatives. Values on a staggered 

grid are represented on the center of the positive axis faces. This allows for the spatial 
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derivative to be computed as a closer central difference, (less smoothed out) which lands 

the result in the center of the voxels of the resulting field, which eliminates the need for an 

extra trilinear interpolation step. Much research has been put into optimizing grids as a 

data structure for fluid simulations. 

4.3 Surface construction 

A surface is constructed on the implicit the fluid signed distance field. Having a surface 

enables us to enforce a density constraint in only 2 dimensions instead of a 3 dimensional 

volume. Each voxel is sampled once for the distance to the surface and a point lifted or sunk 

from the center of the voxel to sit on the surface. More samples may be used to build a

more accurate surface at the cost of additional complexity (see Figure 4). The set of points 

that represent the surface are used to build a mesh. The points act as vertices for the 

resulting quadrilaterals. The surface can be further refined by looking for disparity in 

height and adding additional vertices along with their resulting triangles in order to get a 

more accurate surface. 

Inserted vertices that come from the refinement step will fall on an edge and will 

gravitate towards the points with the greatest difference. The disparity is measured by 

comparing difference in height among the four shared axel points. Like clothes on a 

clothing line that is lifted, the point slides closer to the steeper point. If the point slides too 

close and creates a sliver (a triangle with a low area to edge length), which is degenerate, 

and the point is removed. Small primitives unnecessarily increase the size of our solver 

matrix and are avoided. The resulting surface is a combination of triangles and quads.  
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Figure 4: An example of our Surface construction from a signed 
distance field 

Delaunay triangulation can be used to enforce the Delaunay condition minimizing 

the maximum angles. A simple triangle soup can be built by of randomly adding a point 

from the point set, forming a triangle and flipping if needed. Though the surface used does 

not need enforce the Delaunay condition. A balanced algorithm for triangulation is 

important to keep the surface as uniform as possible as it gives the solver predictable areas 

for pressure to escape to. Delaunay is often the go to algorithm with triangularization. The 

surface, however, may also be entirely comprised of triangles by using Catmull-Clark 

subdivision if one so chooses. A mixture of polys and triangles will work equally well for 

our purposes as our algorithm generalizes to any polygon. 

The surface comprises the boundary of a 3-dimensional volume. As we are only 

interested in the top surface, a group of polygons is formed by calculating each face normal 
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and filtering out every face that differs from the angle pointing directly upwards by a 

maximum of 85 degrees arbitrarily chosen to be near vertical. This constraint means that 

the only faces to remain are those that face relatively upwards. Those faces are the most 

likely to support the bulk of the gas particles. This filtering is a trade-off that allows for a 

smaller problem set. 

4.4 Projection 

A trade-off between realism and complexity is made with the projection from 3-dimensions 

to 2-dimensions. The difference in speed in each frame is justifies the error in accuracy 

introduced with projection. As a granular simulation will mostly be viewed from above, 

subtle difference in particle height go unnoticed. Taking advantage of this fact we approach 

the problem of density correction as a 2-dimensional problem and project particles that are 

close to the fluid surface onto the newly created surface. 

The particles that represent the gaseous state of the granular simulation are located 

on the fluid surface and are allowed to slide along that surface as necessary. As gravity 

overcomes the hydrophobic properties of the surface, the particles coalesce and join the 

fluid. This results in the majority of the gas particles floating just above the fluid surface. As 

particles exit this space, they are either ignored if they travel above or converted below 

into the fluid state. In order to spread these particles apart along the surface, they are 

projected onto the newly built surface. 

Gas particles can be projected onto the surface by using a minimum distance 

criteria. Points along the surface and particles can be paired by using a divide and conquer 

closest point-pair algorithm. A more straightforward approach involves gas particles using 
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ray-triangle intersection with a downward normal (along gravity). The ray-triangle 

intersection can give the point of collision in Barycentric coordinates and ray-polygon 

intersection in parametric coordinates. 

𝜌𝑓 =
∑  f𝑝

𝑛

𝑝=0

𝑎
(1) 

As each gas particle projects to a single polygon, the relationship becomes a one-to-

many relationship where each polygonal face, f, can have any number of gas particles 

project to it. The concentration of particles on each polygon normalized by the area, 𝑎, of

the polygon determines its density, 𝜌 (1). The density of every polygon is needed to enforce 

the global density constraint in the density correction step.  

4.5 Texture Parameterization 

The construction of a fluid surface and filtering out faces by their normals allows for the 

planning of a 2-dimensional manifold that can host a lightweight solution to the problem of 

interpenetrating particles. Building the surface as a manifold abstracts away 3-dimensional 

spatial details in favor of relative position in a 2-dimensional context. 

Manifolds are offered referred to as textures and are parameterized along two 

dimensions commonly labeled U and V to avoid confusion with Euclidian spaces. Mapping 

textures to meshes or subdivision surfaces is a common problem in animation. The ideal 

parameterization of this manifold provides a mapping from an individual face to all 

neighboring faces that share an edge (see Figure 5). A per-face UV parameterization with 
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adjacency data called Ptex has been developed by Disney Animation for efficient and 

general filtering across textures. 

Figure 5: Ptex parameterization of neighboring faces establishing adjacency.  

Ptex is a per-face parameterization where U and V texture coordinates are local to 

the face. Along with individual U and V coordinates, the Ptex texture format also encodes 

neighboring (faces that share an edge) faces to allow for easy convolution and 

compression. A neighbor or adjacent primitive is determined by a shared edge. There is no 

need to parameterize the surface globally.  

4.6 Quadratic Minimization 

Sand is unilaterally incompressible. This means that while sand cannot be compressed 

beyond a certain threshold, it also does not force the system to become divergence free. 

Our density correction step is a constraint that enforces unilateral incompressibility. 

Though it can be compressed beyond a certain threshold, it may be free to disperse 
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indefinitely, or only experience compression in only one direction. Sand differs from water 

in that pressure will not infinitely increase given an infinite force. We determine a 

minimum density constraint that each face is bound to in order to avoid excessive particle 

overlap as demonstrated in Narain et al [26]. Narain et. al introduces a density constraint to

correct for overly dense conditions on their granular fluid simulation. A unilateral 

constraint means that pressure is only applied in areas where density has hit a threshold. 

Areas below this threshold are largely unaffected [27]. The constraint is satisfied by 

moving particles away from cells that violate it. The minimum amount of movement 

needed to satisfy the constraint is phrased as a minimization problem (see 2).

𝐹 =
1

2
𝑝𝑇𝐴1𝑝 + 𝑏1

𝑇𝑝 (2) 

We adapt this formulation to our surface particle problem. Because of quadratic 

terms, we solve the minimization problem using a custom quadratic solver built in our 

research lab and included in previous work [3]. The matrix A is a Laplacian sparse matrix 

describing the density of faces and their relationship with their neighbors (see Figure 6). 

The vector p is our pressures that we are trying to solve for and must be positive. The 

vector b represents our density constraint.
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 Figure 6: Linear Differencing kernel representing a single row/column entry 

Each primitive or cell is assigned an index. For every index of that primitive, there is 

a corresponding row and a corresponding column. For example, primitive number 5 will 

insert its values into row 5 and column 5. A surface comprised of 1000 faces, for example, 

would result in a square matrix of 1000 rows and 1000 columns. Like a Laplacian kernel, 

the Laplacian sparse matrix behaves like a second order operator. In the position where the 

corresponding row and column index intersect, the kernel value of the primitive at that 

index is inserted. For each neighbor n at index j, a value of -1 also is inserted corresponding 

to their position the row and column of the matrix.  

𝐴𝑖,𝑖 =
𝜌𝑖

𝜌𝑚𝑎𝑥𝑎2
|𝑛| ,    𝐴𝑖,𝑗 = 𝐴𝑗,𝑖 = −

1

𝑎𝑗
(3) 

This results in an upper triangular, symmetric, and sparse matrix. The kernel value 

inserted is the density, or particles per area divided by the maximum allowed particles. Our 

vector b contains length |faces| with volume fractions 1 −
𝜌

𝜌𝑚𝑎𝑥
 for each face in the index 

corresponding to the primitive index. Our solution vector p contains pressures for each 

face (3).



www.manaraa.com

34 

4.7 Gradient 

Particles near the implicit surface are advected by taking the reversed gradient of the 

surface and moving particles along the resulting vector field. The quadratic minimizer 

leaves a pressure, 𝜳 , which is associated to each primitive face. Instead of having a normal 

voxel grid of pressures, however, we have a non-uniform surface that has been discretized 

by constructing triangles and quadrilaterals along the implicit boundary of the hybrid 

simulation.  

Figure 7: Central differencing on a non-uniform manifold. 

We implemented a modified central differencing approach to adapt the gradient to a 

non-uniform surface. The resulting vector does not have to be constrained to the surface 

(see Figure 7). With our geometry in ptex format, we have access to all adjacent primitives 

for any given primitive. Central differencing generates a vector with each pair. The base of 

the vector is the midpoint between two primitive centroids possibly generated outside the 

plane of either primitive. The direction of the vector points to the centroid of the primitive 

that contains a lower pressure value (4). Vectors may be degenerate in the case of equal 

pressure values.  𝛼, 𝛽  correspond to the centroid position vectors.  𝜳𝛼 , 𝜳𝛽 are the
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pressures of the corresponding primitives.  𝛿 is the resulting gradient vector with position

at 0 and direction at norm. 

𝛿0 =
𝛼+𝛽

2
,     𝛿û =

max[𝜳𝛼 ,𝜳𝛽]

||𝛼− 𝛽||
(4) 

The vectors are normalized then scaled as pressures take into account differences in 

area and density and are expressed in direction. The resulting vector field is also non-

uniform.  Central differencing is ideal for adjacent primitives as forward or backward 

differencing methods require a fully parameterized surface which is unnecessary. Accuracy 

in producing the gradient is also sufficient using central differencing. 

4.8 Advection 

Each particle is advected along the resulting gradient field. The field does not apply a force 

as forces can be problematic as they can cancel out other forces in the particles. Instead, the 

granules are instantly displaced in time along the field. The displacement is scaled by the

simulation time step to prevent unnatural movement or introducing energy into the 

system.   

∑
𝑓𝑜𝑟𝑐𝑒𝑝

(𝑥−𝑥𝑝)2+(𝑦−𝑦𝑝)2+(𝑧−𝑧𝑝)2

𝑛

𝑝=0
(5) 

Particles receive interpolated direction from the field using a weighted proximity 

technique. A meatball [30] kernel determines proximity using a distance threshold among 

the point and its nearby vectors (5). Metaballs are ideal for setting up fields of influence. 

The kernel gives a higher weight to vectors that are closer. This results in points’ positions 

being largely determined by their local neighborhood while also being influenced by wider 
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trends in the system. After particles have been moved along the gradient field, they 

continue to run through the hybrid simulation, reacting to external forces, coalescing, and 

separating as normal. 
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Chapter 5

Results 

We set up a signed distance field volume that was initially 10x10x10. The volume has a 

random function that generates interior and exterior volume for our algorithm to run on. 

We populated the surface of the volume with 10,000 particles. Particle distribution is 

biased to simulate the condition of clumping on a full solver (see Figure 8). 

Results of the simulation are run a small grid as well as a higher grid. To render each 

frame takes < 1 second on a 4.0 Ghz AMD 8 core machine with 16 Gb of memory on a 

virtual machine allotted 50% of those resources. The algorithm is not intended to be real 

time. The fluid step on a sand solver can typically take 30 seconds to 3 minutes on a similar 

machine and similar grid. On a 1000x1000x1000 volume the simulation takes 3-12 minutes 

depending on the initial conditions of the solver. Solving over a 3d volume would take 

hours. 

The first set of results shows a volume with particles forming in 9 individual 

clusters. In each of these clusters, the algorithm detected violation of the density constraint 

and flagged the primitive with a high pressure. Lower pressure primitives surrounding pull 

the particles apart. The next set of results were run on a higher voxel grid with more 

primitives creating the surface. A cluster of particles is detected and dispersed. The third 

set of results is run at the same resolution with different random initial conditions and 

shows a more broad resolution of the particles. 
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Results 1: Single pass with low resolution mesh (1030) shows overpopulated quads pulling particles away 

from the center. 10,000 particles on surface. Constraint of 20 particles per face. 
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Results 2: High resolution mesh (10003) shows overpopulated quad pulling particles away from the center. 

10,000 particles on surface. Constraint of 20 particles per face. Particles that do not exceed the threshold do 

not get pushed apart. 
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Results 3: Another high resolution mesh (10003) with a different surface. Constraint of 20 particles per face. 

Dispersion of particles in overly dense areas. 
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Chapter 6 

Discussion and Future Work 

Our solution performs well at breaking apart clumps that upset our predefined density 

constraint. In every case where particles violate this constraint, they are globally moved 

into lower pressure areas to obey the constraint.  

One shortcoming of our algorithm is that our density constraint has to be specified 

ahead of time. Future could involve automatically finding a threshold based on the 

distribution of the particles at the start of the frame and adjusting to enforce a constraint 

on a certain deviation of that density. Another issue is when the constraint is set too high 

and the system is too laden with particles to be able to effectively find a solution where the 

constraint isn’t violated becomes impossible. This is only avoided through trial and error. 

Our formation of the problem was from the primitive or cell point of view. We just 

have easily formulated the problem from a vertex point of view, which would allow us to 

perform operations like the gradient as a vertex shader potentially speeding up the process 

and giving us access to the graphics card for parallel computation. 

The construction of the surface from the implicit voxel boundary alternatively could 

be dependent upon the density of the particles around it. More triangles and quadrilaterals 

under particle-dense areas would allow for more gradient vectors resulting in finer 

movement. More computation would be spent on problem areas as opposed to a mostly 

uniform advection solution. 
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 Another possibility for dispersing patches is to apply more than one pass of our 

algorithm relaxing the constraint on each pass in order to get additional smoothness. The 

motivated researcher may even apply machine learning to reach a solution that optimizes 

for both speed and lower density given the inputs of number of passes, density constraint, 

and various scalar values found throughout the equations like advection intensity. 
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Chapter 7 

Conclusion 

We have demonstrated a superior method for handling surface particles on a hybrid 

simulation. Our method solves the issue of particles getting too close together and 

clumping unnaturally, distracting from the simulation. We have solved this issue without 

adding a computational bottleneck and meeting the performance goals of the hybrid solver.  

Our contributions include a unique rephrasing of the problem of running our 

density correction step from a 3d volume to a 2d manifold making a very important trade-

off in having a faster density correction step while relenting only slightly on the visual 

acuity of the algorithm. As a result, we have extended the 3-phrase hybrid simulation to fix 

an artifact on the surface where particles clumped.  
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